If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+1-7x=13x^
We move all terms to the left:
3x^2+1-7x-(13x^)=0
We add all the numbers together, and all the variables
3x^2-20x+1=0
a = 3; b = -20; c = +1;
Δ = b2-4ac
Δ = -202-4·3·1
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{97}}{2*3}=\frac{20-2\sqrt{97}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{97}}{2*3}=\frac{20+2\sqrt{97}}{6} $
| 14=x/30 | | 12w+0=3(w+57) | | 4n-3n=11 | | 4x-28=-2x | | 28=1/x | | 36-4x=1/2 | | 59+(3x+14)=90 | | 12p+18=6(3+2p) | | 59+(3x+14)=0 | | 2v+20=88 | | 38=4w-26= | | y/2+7=-12 | | -12=2(y-7) | | 3.5=5x-4 | | 10x-15=8x+10 | | 7(z−2)=294+6z | | 6(4u+6)=5(6u-6) | | 1=f-84/9 | | 3p=-159 | | -8x-2=4x+4 | | -31=5+9r | | 5x-6x=7 | | -3(w-1.2)=9 | | 3d/4+2d=11 | | 3-x=x+8 | | 1=f−84/9 | | 4.7=g/3.2* | | u/5+27=33 | | 4x+2(x+8)=-12 | | 1/2x+1/5=14 | | 17=w/6* | | 0.75x+7=13 |